Skip to main content

memcpy and it's usage with structs

A good question on stack overflow can be found here
It discusses about the size of the array being different to the sum of the size of each member.
e.g.
struct Item{
    int i; // 4
    char buf1[10]; // 10
    char buf2[20]; // 20
};

sizeof(test) is actually 36!!! This is because of padding the members...
Memory is usually organized into 8 byte chunks, so sometime the compiler will add 4 additional padding bytes for the int...

Anyways memcpy is on the spotlight and it's a generic function that can be used to copy the values of num bytes from the location pointed by source directly to the memory block pointed by destination.,

void * memcpy ( void * destination, const void * source, size_t num );
 
You can use it to copy char buffers, arrays, structs or any other memory.
This is a fast operation and should be used in performance oriented programs instead of assignment.

The following example illustrates it's usage pointing out that you can't really use pointer arithmetic to memcpy to a specific memory location of the struct.



Rendering...

Comments

Popular posts from this blog

Detaching a process from terminal - exec(), system(), setsid() and nohup

Linux processes are created by fork() and exec(). The very first process of POSIX systems is init and subsequent processes are derived from the init as parent. These subsequent processes are child processes. During forking the parent process copies itself - with all I/O, address space, stack, everything. The only thing that is different is the process ID. The parent and child will have 2 different process IDs. The system() library function uses fork(2) to create a child process that executes the shell command specified in command using execl(3) as follows: execl("/bin/sh", "sh", "-c", command, (char *) 0); system() returns after the command has been completed. system() executes a command specified in command by calling /bin/sh -c command , and returns after the command has been completed. During execution of the command, SIGCHLD will be blocked, and SIGINT and SIGQUIT will be ignored.  system() calls are often made within programs to execut...

C++ Callbacks using function pointers vs boost bind +boost function

In C, the most common uses of callbacks are as parameters to library functions like qsort , and as callbacks for Windows functions, etc. For example you might have a library that provides some sorting functions but you want to allow the library user to provide his own sorting function. Since the arguments and the return values do not change depending on the sorting algorithm, this can be facilitated in a convenient manner using function callbacks. Callbacks are also used as event listeners. onMouseClick(), onTerminalInput(), onData(), onConnectionStatus(), onRead() are probably some examples you've already seen in different libraries. The libraries have these callback functions and the users of the library are supposed to implement them. The library has a function pointer to these functions and calls them on their event loop which will invoke the code of the inherited classes of the library user. The implementation of function pointers is simple: they are just "code p...

sprintf, snprintf, strcpy, strncpy and sizeof operator

"C library functions such as strcpy (), strcat (), sprintf () and vsprintf () operate on null terminated strings and perform no bounds checking." "snprintf is safer than sprintf" What do these statements really mean? int sprintf ( char * str , const char * format , ... )  int snprintf ( char * s, size_t n, const char * format, ... );  char * strcpy ( char * destination, const char * source ); char * strncpy ( char * destination, const char * source, size_t num );   The usage is something like; char* msg1 = new char[10]; strcpy(msg1, "test"); // 1 char buffer[128]; sprintf(buffer, "%s", msg); //2 strcpy : Copies bytes until it finds a 0-byte in the source code. The string literal "test" has 4 characters and a terminating null character at end, therefore needs 5 characters at least on msg1.  Is this dangerous? Yes, because if the source message is not null terminated it will read until a null character ...